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1. The concept of parallelism introduced by Levi-Civita for general
Riemannian manifolds of n dimensions has been extended by many writers
to manifolds for which there is not an assigned metric. Weyll used the
term affine connection to define the relation between elements at different
points of a space and used a linear connection in the definition of which
the coefficients rjk are symmetric in j and k. Equivalent definitions
have been used by Eddington,2 and by Veblen' and the author8 in their
papers on the geometry of paths. Schouten4 has made an analysis of types
of linear connection without the restriction that the coefficients be sym-
metric. It is the purpose of this note to show that the infinitesimal genera-
tors of a simply transitive continuous group in n variables serve to define
an unsymmetric linear connection for which there exist symmetric tensors
gij, involving n(n + 1)/2 arbitrary constants, whose first covariant
derivatives are zero. Moreover, if one of these tensors is taken for the
fundamental tensor of a Riemannian manifold, the group is a transitive
group of motions for the manifold.

2. Consider a space of n dimensions of co6rdinates xi for i = 1, ..., n.
Let X', be the components of n linearly independent contravariant vectors
in the space; in this notation a X.1 given a for a = 1, . . . ,n indicates the
vector and i for i = 1, ..., n the component. Since the vectors are
linearly independent, their determinant A = / I is different from zero.
Let A, be the cofactor of X,/ in A divided by A; then

Voll Alig = e0a, (2.1)
where i is summed from 1 to n, according to the customary convention
which will be followed in this paper, and where 4a is 1 for a = j5 and 0
for a * ,.

If we denote by X",i the components of the vector X' ,/ in a coordinate
system x', we have
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XI/ B/ax,* t(2.2)
From (2.1) and analogous equations for the x"s, we have

X Al=-'PX A",
which are reducible by (2.2) to

Since determinant A' * 0, we have

A = Aq axP. (2.3)

Hence for each value of ,, the quantities Af are the components of a
covariant vector, i indicating the component.

3. From (2.3) we have bv differentiation

-_ a aX + A#ax Iq -
x
aX x'q axlp bx'tax'2

Multiplying by

XI=r Xk 6X
)t/ Ot/ aXk'

and summing for il, we get

- r aAk, 6A# 6x? bXj aX'r aXlr 62Xk
\'-x'2 = 'P/ d' d' x dkd'b' (3.1)

If we put

ri. = X;/ aaAxij(3.2)

equations (3.1) become

= k ~ j bX1r 6X'r i)2XkPpq~ ~~-~j ~+ (3.3)rpq=r*.aXxp a8Xlq aXk + aXk a3pXk (3 3)

These are the conditions which the functions Pk, must satisfy in order that
they determine a linear connection, as Schouten4 has shown. This particu-
lar result is due to Weitzenbock.5
From the definition of A# we have also

Xok Aff = ak
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where 5, is 0 or 1 according as i * k or i = k. From this equation and
(3.2), we have also

rk = - AO 8&J . ;(3.5)

Multiplying (3.2) and (3.5) by A' and X-, respectively, and-summing
for k and i in these respective cases, we have in consequence of (2.1)

bAl Aa -k (3.6)

and

aJx}ti - - a/kri (3 7)

Since these are the conditions that the first covariant derivative of As" and
t,/ with respect to the r's be zero, we say that for the linear connection
defined by (3.2) each field of vectors X*k/ (and As ) forms a paralll Aield.

4. If in place of (3.2) and (3.5) we put

rk =Aj = - Ja (4.1)

the r's satisfy equations of the form (3.3) and consequently define another
linear connection. In this case we have in place of (3.6) and (3.7)

= Aa rk (4.2)

and

=xai= - xd,,rI' (4.3).b,9
For this linear connection the vectors Xa/j and Aa do not form parallel
fields.

In order that there may exist a symmetric tensor g., whose first covariant
derivative with respect to the r's be zero, we must have

- gj rik - git I'k = 0 (4.4)

The conditions of integrability of these equations are

gih Bkl + gAu = 0 (4.5)
where

6It~ i)rjk mhI
Bhk=a, + rl'f rhmk - rjkrh . (4.6)

In order that equations (4.4) be completely integrable, that is that they
admit a solution involving n(n + 1)/2 arbitrary constants, it is necessary
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and sufficient that all the functions B,'kL be zero. We show in the next
section that these conditions are satisfied, when the vectors Xi , determine
the infinitesimal generators of a simply transitive continuous group in
n variables.

5. If

are the generators of a simply transitive group, it is necessary that

(Xa,XO)ffi-Xi I - ' ( = CX7ff, (5.2)a/ xs bx-'I (x ax' )~ XJ

where the C's are constants. If these constants satisfy the equations

C: Co + C2ic Co!, + C;X C,a = 0 (a03,X,5,o = 1,. .,n) (5.3)
the conditions are sufficient as well as necessary.6
From (5.2) we have

X*/ aX; - = C4 .

Multiplying this equations by At' Aj and summing for a and ,B, we have
in consequence of (3.4) and (4.1)

-t1 rJ, = - C B41 AvA. (5.4)
By means of these equations,.equations (4.6) can be put in the form

br~~ br b (Xhm h mhbEXk aox' C¢[ak X\/4A AZA )

+ rm, rik - rjk rm1-
Substituting in the first two terms expressions for the rs given by the
second of (4.1), the resulting expressions are reducible to zero by means
of (4.2), (4.3), (5.3) and (5.4).

6. If gij are the components of the fundamental tensor of a Riemannian
manifold V, of n dimensions, and X,,/ for i = 1,. ., n are a set of functions
satisfying the equations

haXa giha-, + gha a/-i 6.1agij -~~~ 0, (6.1)

then, as Killing7 has shown, XaJ = X`/ is the generator of a one par-

ameter group of motions of V. into itself. Conversely, suppose that (5.1)
are the generators of a simply transitive group. In order that this be a

group of motions for a V", it is necessary that (6.1) for a = 1,. . ., n hold.
Multiplying (6.1) by A' and summing for a, we get (4.4) in consequence
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of (3.4) and (4.1) Hence equations (6.1) admit solutions involving
"(i + 1)

n(n + 1)/2 arbitrary constants, and consequently there are 2o
"

2

Riemannian manifolds admitting a given simply transitive group as a
group of motions, a result due to Bianchi.8

1 Space, Time, Matter, p. 112.
2 The Mathematical Theory of Relativity, Chapter 7.
3These PROCEEDINGS, 8 and 9; Trans. Amer. Soc., 25 and 26; Annals, 24.
4Der Ricci-Kalkul, pp. 64, 65.
6 Invariantentheorie, pp. 318, 319.
6 Lie, Vorlesungen uber Continuerliche Gruppen, pp. 391, 396.
7 Crelle, 109, 1892, p. 121.
8 Lezioni Sulla Teoria dei Gruppi Continue Finiti, p. 517.
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In a recent number of the Proceedings of the Royal Academy oj Amster-
dam,' H. Kneser proves the following theorem:

I. A necessary and szfficient condition that a connected n-dimensional
manifold M? (n > 1) be separated into two and only two regions by every
connected (n-1)-dimensional manifold M"-1 contained in MA is that the
first Betti number Pl oJ M" be equal to unity and that there be no even coeffi-
cients of torsion of the lowest order.

Kneser's proof is combinatorial and presupposes that M"1- always
belongs to a cellular subdivision of M".

It is perhaps worth noticing that the meaning of this theorem becomes
very transparent in the light of the simplified, modulo 2 theory of connec-
tivity, in which no distinction is made between positively and negatively
oriented cells. Let us say that an n-complex is completely connected if
it is possible to pass from anv n-cell of the complex to any other by a series
of steps at each of which we go from an n-cell E" to an n-cell F" incident to
the same (n- 1)-cell as En. Then, in the language of the modulo 2
theory, we have the following basic theorem which is almost self-evident.

II. Let C" be any closed, irreducible n-complex and C-' any closed irre-
ducible (n- 1)-complex made up of cells of Cn. Then, if C"-1 is bound-
ing, it decomposes the complex C" into exactly two completely connected
complexes C1 and C2, but if Cn-I is non-bounding, it leaves C" completely
connected. The complexes C1 and C: which touch along C"' may also
touch in certain cells of dimensionalities less than n-1.
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